Time-resolved dynamics of laser-induced micro-jets from thin liquid films
نویسندگان
چکیده
Laser-induced forward transfer (LIFT) is a high-resolution direct-write technique, which can print a wide range of liquid materials without a nozzle. In this process, a pulsed laser initiates the expulsion of a highvelocity micro-jet of fluid from a thin donor film. LIFT involves a novel regime for impulsively driven free-surface jetting in that viscous forces developed in the thin film become relevant within the jet lifetime. In this work, timeresolved microscopy is used to study the dynamics of the laser-induced ejection process. We consider the influence of thin metal and thick polymer laser-absorbing layers on the flow actuation mechanism and resulting jet dynamics. Both films exhibit a mechanism in which flow is driven by the rapid expansion of a gas bubble within the liquid film. We present high-resolution images of the transient gas cavities, the resulting ejection of high aspect ratio external jets, as well as the first images of re-entrant jets formed during LIFT. These observations are interpreted in the context of similar work on cavitation bubble formation near free surfaces and rigid interfaces. Additionally, by increasing the laser beam size used on the polymer absorbing layer, we observe a transition to an alternate mechanism for jet formation, which is driven by the rapid expansion of a blister on the polymer surface. We compare the dynamics of these blister-actuated jets to those of the gas-actuated mechanism. Finally, we analyze these results in the context of printing sensitive ink materials.
منابع مشابه
Laser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film
Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...
متن کاملLaser-induced magnetization dynamics of lanthanide-doped permalloy thin films.
We investigate the effect of Ho, Dy, Tb, and Gd impurities on the femtosecond laser-induced magnetization dynamics of thin Permalloy films using the time-resolved magneto-optical Kerr effect. Varying the amount of Ho, Dy, Tb content from 0% to 8%, we observe a gradual change of the characteristic demagnetization time constant from approximately 60 to approximately 150 fs. In contrast, Gd concen...
متن کاملCharacterization and Corrosion Behavior of Hydroxyapatite- Coated Titanium Substrates Prepared Through Laser Induced Liquid Deposition Technique
Titanium and titanium alloys are often used in orthopedic surgery and dentistry because of their especial characteristics such as biocompatibility, mechanical properties, and corrosion resistance. However, their bio- inertness is the most serious drawback for biomedical applications. Therefore, a bioactive coating like hydroxyapatite (HA) is coated on their surface. In this regard, in the prese...
متن کاملDynamics of the solidification of laser-annealed Si thin films
Nanosccond time-resolved reflectivity and transmis~ion measurements are uscd for the observation of solidification phenomena, following incornpletc or complete rneltrng of thin Si films ( d = 125 nm) by nanosecond laser pulses. Solidification is observed to proceed at the liquid-solid interface as Tong as the film is not melted completely. OR complete melting of the film, nucleation in the liqu...
متن کاملNew Sol-Gel Solution with 45 Days Stability for Preparation Silica Thin Films
As we know sol-gel is one of the most important techniques for thin film preparation. In this paper, high transmission silica thin films have been prepared by dip-coating process from a new silicon-alkoxide solution. The prepared sol was stable for 45 days which is very important to characterize the coating process. The optical properties as a function of aging time, withdrawal rate, and he...
متن کامل